Kollmorgen VLM Brushless Motor Selection Guide

with AKD™ Servo Drive Systems

KOLLMORGEN

Because Motion Matters™

Kollmorgen. Every solution comes from a real understanding of the challenges facing machine designers and users.

The ever-escalating demands of the marketplace mean increased pressure on machine designers and users at every turn. Time constraints. Demands for better performance. Having to think about the next-generation machine even before the current one is built. While expectations are enormous, budgets are not. Kollmorgen's innovative motion solutions and broad range of quality products help engineers not only overcome these challenges but also build truly differentiated machines.

Because motion matters, it's our focus. Motion can distinctly differentiate a machine and deliver a marketplace advantage by improving its performance. This translates to overall increased efficiency on the factory floor. Perfectly deployed machine motion can make your customer's machine more reliable and efficient, enhance accuracy and improve operator safety. Motion also represents endless possibilities for innovation. We've always understood this potential, and thus have kept motion at our core, relentlessly developing products that offer precision control of speed, accuracy and position in machines that rely on complex motion.

Because Motion Matters™

Removing the Barriers of Design, Sourcing, and Time

At Kollmorgen, we know that OEM engineers can achieve a lot more when obstacles aren't in the way. So, we knock them down in three important ways:

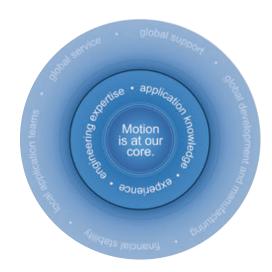
Integrating Standard and Custom Products

The optimal solution is often not clear-cut. Our application expertise allows us to modify standard products or develop totally custom solutions across our whole product portfolio so that designs can take flight.

Providing Motion Solutions, Not Just Components

As companies reduce their supplier base and have less engineering manpower, they need a total system supplier with a wide range of integrated solutions. Kollmorgen is in full response mode with complete solutions that combine programming software, engineering services and best-in-class motion components.

Global Footprint


With direct sales, engineering support, manufacturing facilities, and distributors spanning the Americas, Europe, Middle East, and Asia, we're close to OEMs worldwide. Our proximity helps speed delivery and lend support where and when they're needed.

Financial and Operational Stability

Kollmorgen is part of Danaher Corporation. A key driver in the growth of all Danaher divisions is the Danaher Business System, which relies on the principle of "kaizen" — or continuous improvement. Using world-class tools, cross-disciplinary teams of exceptional people evaluate processes and develop plans that result in superior performance.

Table of Contents

AKD Servo Drive	4
VLM Series Brushless Servomotor Benefits	8
VLM2x Series Brushless Servomotor	10
VLM2x General Specification	10
VLM2x Outline Drawings & Dimensional Data	11
VLM2x Performance Data	12
VLM2x Performance Curves	13
VLM3x Series Brushless Servomotor	14
VLM3x General Specification	14
VLM3x Outline Drawings & Dimensional Data	15
VLM3x Performance Data	16
VLM3x Performance Curves	17
Bearing Fatigue and Shaft Loading	18
Connector Options	19
Model Nomenclature	23
MOTIONEERING Application Engine	25

AKD™ Servo Drive

Our AKD series is a complete range of Ethernet-based servo drives that are fast, feature-rich, flexible and integrate quickly and easily into any application. AKD ensures plug-and-play commissioning for instant, seamless access to everything in your machine. And, no matter what your application demands, AKD offers industry-leading servo performance, communication options, and power levels, all in a smaller footprint.

This robust, technologically advanced family of drives delivers optimized performance when paired with our best-in-class components, producing higher quality results at greater speeds and more uptime. With Kollmorgen servo components, we can help you increase your machine's OEE by 50%.

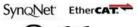
The Benefits of AKD Servo Drive

Auto-tuning is one of the best and fastest in the industry
 Automatically adjusts all gains, including observers
 Immediate and adaptive response to dynamic loads
 Precise control of all motor types
• Compensation for stiff and compliant transmission and couplings
 Up to 27-bit-resolution feedback yields unmatched precision and excellent repeatability
 Very fast settling times result from a powerful dual processor system that executes industry-leading and patent pending servo algorithms with high resolution
 Advanced servo techniques such as high-order observer and bi-quad filters yield industry-leading machine performance
 Highest bandwidth torque-and-velocity loops. Fastest digital current loop in the market
 Six-channel real-time software oscilloscope commissions and diagnoses quickly
 Multi-function Bode Plot allows users to quickly evaluate performance
 Auto-complete of programmable commands saves looking up parameter names
 One-click capture and sharing of program plots and parameter settings allow you to send machine performance data instantly
 Widest range of programming options in the industry
• 3 to 24 Arms continuous current; 9 to 48 Arms peak
 Very high power density enables an extremely small package
 True plug-and-play with all standard Kollmorgen servomotors and actuators
 Supports a variety of single and multi-turn feedback devices— Smart Feedback Device (SFD), EnDat2.2, 01, BiSS, analog Sine/ Cos encoder, incremental encoder, HIPERFACE®, and resolver
 Tightly integrated Ethernet motion buses without the need to add large hardware: EtherCAT®, SynqNet®, Modbus/TCP, EtherNet/IP, PROFINET, and CANopen®
 Scalable programmability from base torque-and-velocity through multi-axis master

AKD Servo Drive

The AKD servo drive delivers cutting-edge technology and performance with one of the most compact footprints in the industry. These feature-rich drives provide a solution for nearly any application, from basic torque-and-velocity applications, to indexing, to multi-axis programmable motion with embedded Kollmorgen Automation Suite. The versatile AKD sets the standard for power density and performance.

Best-in-Class Components


AKD works seamlessly with Kollmorgen motors and actuators—well-known for quality, reliability, and performance.

 $\mathsf{AKD}^{\scriptscriptstyle\mathsf{TM}}\operatorname{Servo}\operatorname{Drive}$

Modbus/TCP

EtherNet/IP

General Specifications

donoral opoonio									
120 / 240 Vac 1 & 3 Phase (85 -265 V)	Continuous Current (Arms)	Peak Current (Arms)	Drive Continuous Output Power Capacity (Watts)	(W	al Regen atts) nms)	Height mm (in)	Width mm (in)	Depth mm (in)	Depth with Cable Bend Radius mm (in)
AKD- ■ 00306	3	9	1100	0	0	168 (6.61)	57 (2.24)	153 (6.02)	184 (7.24)
AKD- ■ 00606	6	18	2000	0	0	168 (6.61)	57 (2.24)	153 (6.02)	184 (7.24)
AKD- ■ 01206	12	30	4000	100	15	195 (7.68)	76 (2.99)	186 (7.32)	215 (8.46)
AKD- ■ 02406	24	48	8000	200	8	250 (9.84)	100 (3.94)	230 (9.06)	265 (10.43)
240/480 Vac 3 Phase (187-528 V)	Continuous Current (Arms)	Peak Current (Arms)	Drive Continuous Output Power Capacity (Watts)	(Wa	Il Regen atts) ims)	Height mm (in)	Width mm (in)	Depth mm (in)	Depth with Cable Bend Radius mm (in)

240/480 Vac 3 Phase (187-528 V)	Continuous Current (Arms)	Peak Current (Arms)	Drive Continuous Output Power Capacity (Watts)	(W	al Regen atts) nms)	Height mm (in)	Width mm (in)	Depth mm (in)	Depth with Cable Bend Radius mm (in)
AKD- ■ 00307	3	9	2000	100	33	256 (10.08)	70 (2.76)	186 (7.32)	221 (8.70)
AKD- ■ 00607	6	18	4000	100	33	256 (10.08)	70 (2.76)	186 (7.32)	221 (8.70)
AKD- ■ 01207	12	30	8000	100	33	256 (10.08)	70 (2.76)	186 (7.32)	221 (8.70)
AKD- ■ 02407	24	48	16,000	200	23	310 (12.20)	105 (4.13)	229 (9.02)	264 (10.39)
\$748	48	96	35,000	-	-	385 (15.16)	190 (7.48)	244 (9.61)	285 (11.22)
\$772	72	140	50,000	-	-	385 (15.16)	190 (7.48)	244 (9.61)	285 (11.22)

Note: For complete AKD model nomenclature, refer to page 23.

VLM Series Brushless Servomotor

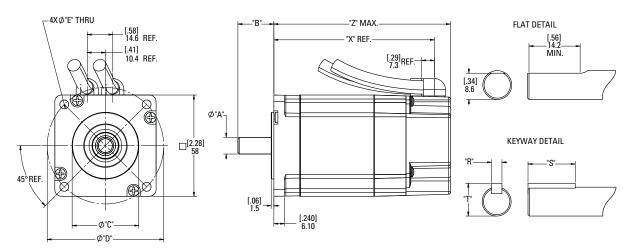
The new VLM family of servomotors is designed for superior Torque-per-dollar for those customers looking for a low cost motor with optimal performance.

With a design targeted for the most common servomotor features and offering torque ranges from 0.5Nm to almost 16Nm, VLM are able to deliver all the torque and performance of a servo while helping customers control their application costs.

VLM Series Brushless Servomotors are available in both NEMA (23, 34) and Metric (60, 90mm) mounting standards with multiple shaft configurations for seamless integration into any system. Similarly, multiple feedback and cable options give customers flexibility in their system configuration without adding significant cost.

The Benefits of Value Line Brushless Servomotors

Exceptional Quality and Value	High torque per dollar					
	Quality components					
	 No need for intermediate cables 					
	 Low cost feedback options standard 					
	• Low cost design					
Standard Configurations To Fit Most Applications	 6 of the most popular size motors with 12 standard windings 					
	NEMA and Metric standard mounts					
	• S200, AKD, Flying Leads and Molex Connector options standard					
	Good match for dynamic loads					
	• Smart Feedback Device, Resolver, or Encoder feedback options.					
Ease of Use	Standard connector options and matching cables					
	 Smart Feedback Device that offers automatic motor recognition and setup when used with Kollmorgen drives 					


VLM2x Series Brushless Servomotor

General Specifications

- NEMA 23 or 60 mm metric
- Designed for 120/240 Vac servo drives
- Windings optimized for 75, 160 and 320 Vdc
- · Rated speeds to 6,000 RPM
- Up to 4.2 N-m peak
- Up to 1.2 N-m continuous
- · CE, UL, cUL
- · RoHS compliant
- IP40 protection
- 1m and 3m lead lengths available
- · High performance magnets for maximum torque
- Standard cabling option for direct connection to S200 (Hall or SFD feedback)
- Standard cabling option for direct connection to AKD (SFD, Resolver or Encoder feedback)

VLM2x Outline Drawings

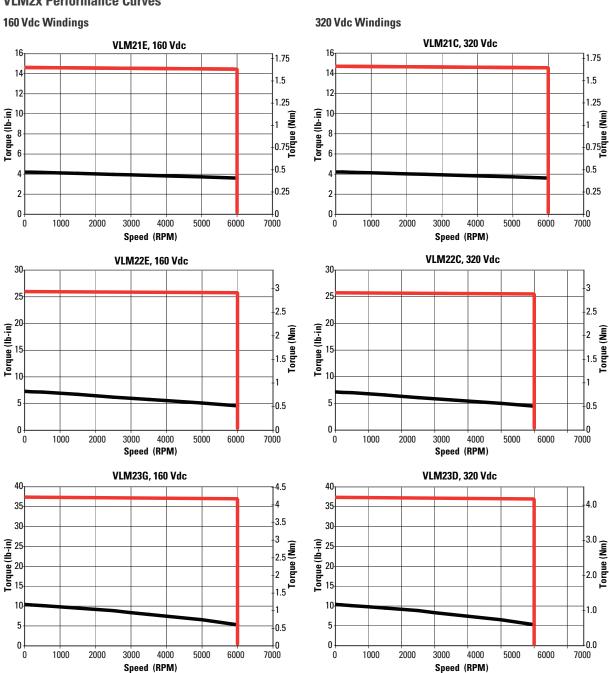
VLM2x Dimensional Data (Up to 320 Vdc

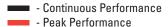
Shaft Mount Option	Units	"A" Shaft Diameter	"B" Shaft Length	"C" Pilot Diameter	"D" Mtg Hole	"E" Mtg Hole Diameter	"R" Key Width	"S" Key Length	"T" Shaft Diameter Over Key	Shaft Feature
A (Metric)	mm	11 ⁰ -0.011	28.5	36 ⁰ -0.025	70.7	4.5	4 0 -0.03	18 0 -0.20	12.5 ⁰ -0.13	Key 4 x 4 x 18
B (NEMA)	inch	.3750 +.0000 0005	0.81	1.500 +.000 002	2.625	.200	-	-	-	Smooth
C (Metric)	mm	14 0 -0.011	30	50 ⁰ -0.025	70	5.5	5 0 -0.03	20 0 -0.20	16 ⁰ -0.13	Key 5 x 5 x 20
D (NEMA)	inch	.2500 +.0000 0005	0.81	1.500 +.000 002	2.625	.200	-	-	-	Smooth
E (Metric)	mm	11 0 -0.011	28.5	36 ⁰ -0.025	70.7	4.5	-	-	-	Smooth
F (NEMA)	inch	.3750 +.0000 0005	0.81	1.500 +.000 002	2.625	.200	-	-	-	Flat
G (Metric)	mm	14 0 -0.011	30	50 0 -0.025	70	5.5	-	-	-	Smooth

MODEL	Units	"X"	Z MAX	
VLM21	mm	78.2	102.40	
VLIVIZ I	inch	3.1	4.03	
VLM22	mm	103.6	127.80	
VLIVIZZ	inch	4.1	5.03	
VLM23	mm	129.0	153.20	
VLIVIZO	inch	5.1	6.03	

Note: For SFD Versions add 0.5 inch (12.7mm)

VLM2x Performance Data

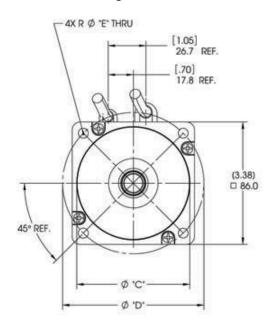

	Up to 320 Vdc				VLM21		VLM22		VLM23	
	Parameters	Tol	Symbol	Units	С	Е	С	Е	D	G
	Max Rated DC Bus Voltage	Max	Vbus	Vdc	320	160	320	160	320	160
	Continuous Torque (Stall) for ΔT	Nom	т	N-m	0.48	0.47	0.81	0.83	1.18	1.18
	winding = 100°C ①②	INUIII	T _{CS}	lb-in	4.2	4.2	7.2	7.3	10.4	10.4
	Continuous Current (Stall) for ΔT winding = 100°C ①②	Nom	I _{cs}	A _{rms}	1.49	2.99	1.69	3.34	2.45	4.91
	Max Mechanical Speed ③	Nom	N _{max}	rpm	6000	6000	6000	6000	6000	6000
	Peak Torque ①②	Nom	Тр	N-m lb-in	1.66 14.7	1.65 14.6	2.91 25.8	2.94 26.0	4.2 37.2	4.2 37.2
	Peak Current	Nom	Ip	A _{rms}	6	12	6.8	13.3	9.8	19.6
	Rated Torque (speed) ①②		T _{rtd}	N-m	-	0.44	-	0.73	-	1.0
음	Tiated forque (speed) we		rta	lb-in	-	3.9	-	6.5	-	8.9
2	Rated Speed		N _{rtd}	rpm	-	3000	-	2000	-	2500
	Rated Power (speed) ①②		P _{rtd}	kW	-	0.14	-	0.15	-	0.26
	``		110	Hp N-m	0.44	0.19 0.41	0.69	0.21 0.52	0.94	0.35
6	Rated Torque (speed) ①②		T_{rtd}	lb-in	3.9	3.6	6.1	4.6	8.3	5.3
\$	Rated Speed		N _{rtd}	rpm	3500	6000	2500	6000	3000	6000
2	·			kW	0.16	0.26	0.18	0.33	0.30	0.38
	Rated Power (speed) ①②		P _{rtd}	Нр	0.22	0.35	0.24	0.44	0.40	0.51
	Rated Torque (speed) ①②		T _{rtd}	N-m	0.41	-	0.51	-	0.6	-
9	nateu forque (speeu) 👓		rtd	lb-in	3.6	-	4.5	-	5.3	-
2	Rated Speed		N _{rtd}	rpm	6000	-	6000	-	6000	-
rio	Rated Power (speed) ①②		P _{rtd}	kW	0.26	-	0.32	-	0.38	-
	(1)		itu	Hp	0.35	- 0.10	0.43	- 0.25	0.51	- 0.24
	Torque Constant ①	±10%	Kt	N-m/A _{rms} Ib-in/A _{rms}	0.32 2.8	0.16 1.4	0.48 4.2	0.25 2.2	0.48 4.2	0.24 2.1
	Back EMF Constant ①	±10%	K _e	V/k _{rpm}	20.8	10.4	31.2	16.1	31.2	15.6
	Resistance (line-line) ①	±10%	R _m	ohm	10.4	2.6	8.8	2.3	4.7	1.2
	Inductance (line-line)	1070	ı'm L	mH	12.1	3.0	12.1	3.2	7.7	1.9
	Inertia (includes Resolver		L	kg-cm ²		429	0.6		0.8	
	feedback)		J _m	lb-in-s ²)E-04	5.60		7.25	
	\\/-:L+		W	kg	1	.4	1.	9	2.3	3
	Weight		VV	lb	3	3.1	4.	2	5.	1
	Static Friction ①		T _f	N-m		008	0.0		0.02	
				lb-in		07	0.0		0.2	
	Viscous Damping ①		K _{dv}	N-m/k _{rpm} lb-in/k _{rpm}		.03	0.0		0.0	
	Thermal Time Constant		TCT	minutes	7	.5	12	.5	17.	.5
	Thermal Resistance		R _{thw-a}	°C/W	2	.4	2	2	1.8	8
	Pole Pairs					3	3	}	3	
	Heat Sink Size					O"x1/4" um Plate	10"x10 Aluminu		10"x10' Aluminu	

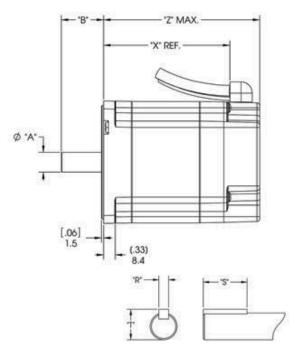

Notes:

- ① Motor winding temperature rise, ΔT =100°C, at 40°C ambient.
- 3 May be limited at some values of Vbus.

- $\ensuremath{\mathfrak{D}}$ All data referenced to sinusoidal commutation.
- 4 Measured at 25°C.

VLM2x Performance Curves


VLM3x Series Brushless Servomotor


General Specifications

- NEMA 34 or 90 mm metric
- Designed for 120/240 Vac servo drives
- Windings optimized for 75, 160 and 320 Vdc
- Rated speeds to 6,000 RPM
- Up to 15.9 N-m peak
- Up to 4.5 N-m continuous
- CE, UL, cUL
- · RoHS compliant
- IP40 protection
- 1m and 3m lead lengths available
- · High performance magnets for maximum torque
- Standard cabling option for direct connection to S200 (SFD or Hall feedback)
- Standard cabling option for direct connection to AKD (SFD, Resolver or Encoder feedback)

VLM3x Outline Drawings

VLM3x Dimensional Data (Up to 320 Vdc)

Shaft Mount Option	Units	"A" Shaft Diameter	"B" Shaft Length	"C" Pilot Diameter	"D" Mtg Hole	"E" Mtg Hole Diameter	"R" Key Width	"S" Key Length	"T" Shaft Diameter Over Key	Shaft Feature
A (Metric)	mm	14 0 -0.011	30	80 +0.012 -0.007	100	7	5 ⁰ -0.03	20 0 -0.20	16 ⁰ -0.13	Key 5 x 5 x 20
B (NEMA)	inch	.5000 +.0000 0005	1.25	2.875 +.000 002	3.875	.218	.125 0 -0.03	.750 ± .010	.555 +.000 017	Key 1/8 x 1/8 x 3/4
C (Metric)	mm	14 0 -0.011	30	80 +0.012 -0.007	100	7	-	-	-	
D (NEMA)	inch	.5000 +.0000 0005	1.25	2.875 +.000 002	3.875	.218	-	-	-	Smooth

MODEL	Units	"X"	Z MAX
VLM31	mm	89.4	112.1
VLIVI3 I	inch	3.5	4.42
VLM32	mm	127.5	150.2
VLIVIOZ	inch	5.0	5.92
VLM33	mm	165.6	188.3
VLIVIOS	inch	6.5	7.42

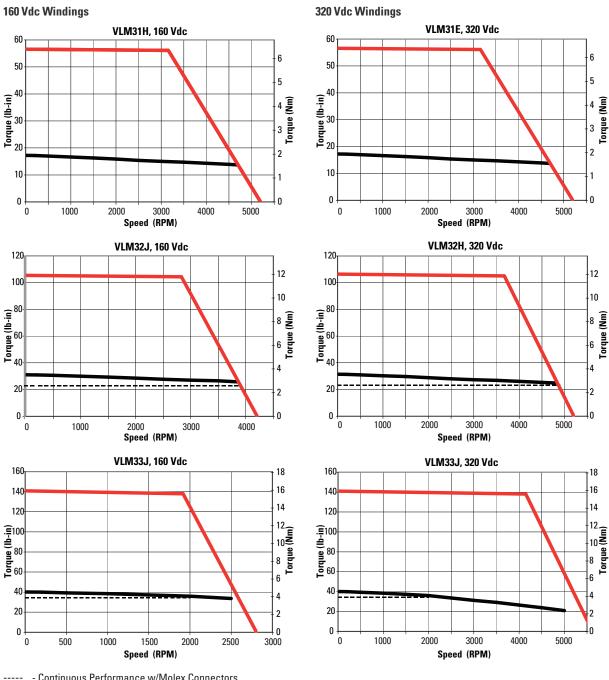
Note: For SFD Versions add 0.5 inch (12.7mm)

VLM3x Performance Data

p to 320 Vdc				VL	M31	VL	M32	VLM33
Parameters	Tol	Symbol	Units	Е	Н	Н	J	J
Max Rated DC Bus Voltage	Max	Vbus	Vdc	320	160	320	160	320
Continuous Torque (Stall) for ΔT		-	N-m	1.96	1.95	3.55	3.51	4.53
winding = 100°C ①②	Nom	T _{CS}	lb-in	17.3	17.3	31.4	31.1	40.1
Continuous Current (Stall) for ΔT winding = 100°C ①②	Nom	I _{cs}	A _{rms}	2.84	5.72	5.26	8.43	7.23
Max Mechanical Speed ③	Nom	N_{max}	rpm	6000	6000	6000	6000	6000
Peak Torque ①②	Nom	Tp	N-m	6.4	6.4	12.0	11.9	15.9
Touk lorque we	IVOIII	ı þ	lb-in	56.6	56.6	106.2	105.3	140.7
Peak Current	Nom	Ι _p	A _{rms}	11.3	22.9	21.1	33.7	28.9
Rated Torque (speed) ①②		T _{rtd}	N-m	-	1.82	-	3.32	-
			lb-in	-	16.1	-	29.4	-
Rated Speed		N _{rtd}	rpm	-	1750	-	1500	-
Rated Power (speed) ①②		P _{rtd}	kW	-	0.33	-	0.52	-
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		itu	Нр	-	0.45	-	0.70	-
Rated Torque (speed) ①②		T _{rtd}	N-m	1.8	1.62	3.26	3.0	3.93
D . 10 I			lb-in	15.9	14.3	28.9	26.6	34.8
Rated Speed		N _{rtd}	rpm	2000	4000	2000	3500	2250
Rated Power (speed) ①②		P _{rtd}	kW	0.38	0.68	0.68	1.10	0.93
			Hp N-m	0.51 1.63	0.91	0.92 2.86	1.47	1.24 2.37
Rated Torque (speed) ①②		T _{rtd}	Ib-in	14.4		25.3	_	21.0
Rated Speed		N _{rtd}	rpm	4000	_	4500	_	5000
nated opeca		ייונט	kW	0.68		1.35		1.24
Rated Power (speed) ①②		P _{rtd}	Нр	0.92		1.81	_	1.66
			N-m/A _{rms}	0.71	0.35	0.70	0.43	0.65
Torque Constant ①	±10%	K _t	Ib-in/A _{rms}	6.3	3.1	6.2	3.8	5.8
Back EMF Constant ①	±10%	Ke	V/k _{rpm}	45.9	22.6	45.2	27.9	41.9
Resistance (line-line) ①	±10%	R _m	ohm	4.3	1.1	1.6	0.7	0.85
Inductance (line-line)		iii	mH	11.7	2.8	5.0	1.9	2.7
Inertia (includes Resolver			kg-cm ²		.79		.37	4.84
feedback)		Jm	lb-in-s ²		8E-03		3E-03	4.28E-05
W. L.		147	kg		3	4	1.7	6.3
Weight		W	lb	(6.6	1	0.4	13.9
Static Friction ①		T _f	N-m		1.06	0	.15	0.17
Static Miction ('1	lb-in		1.53		.33	1.50
Viscous Damping ①		K _{dv}	N-m/k _{rpm}		.016		039	0.047
			lb-in/k _{rpm}		1.14		.35	0.42
Thermal Time Constant		TCT	minutes		0.5		0.5	26
Thermal Resistance		R _{thw-a}	°C/W		1.6	1	.2	0.96
Pole Pairs					3		3	3
Heat Sink Size					0"x1/4"		0"x1/4"	10"x10"x1/4"

Notes:

- ① Motor winding temperature rise, ΔT =100°C, at 40°C ambient.
- ③ May be limited at some values of Vbus.

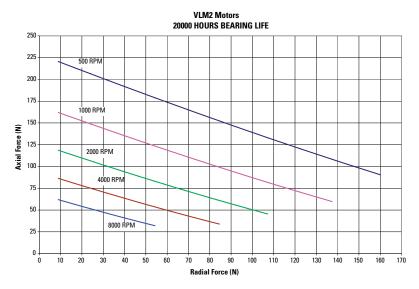

Aluminum Plate ② All data referenced to sinusoidal commutation.

Aluminum Plate

4 Measured at 25°C.

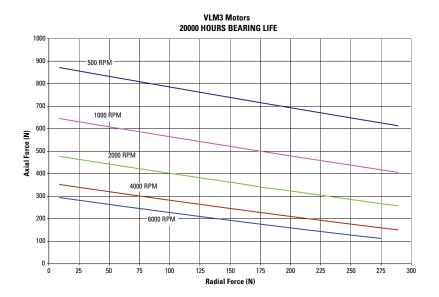
Aluminum Plate

VLM3x Performance Curves

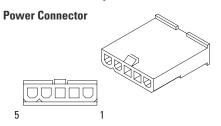


- Peak Performance

Bearing Fatigue and Shaft Loading


Shaft Loading

Motor	Max. Radial Force (N)	Max. Axial Force (N)
VLM2	150*	260
VLM3	280	1330

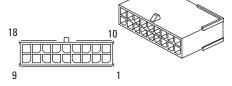

*VLM2 with "D" Shaft/Mount option is limited to 50N due to .25 inch diameter shaft.

The maximum radial load ratings reflect the following assumptions:

- 1. Motors are operated with peak torque of the longest member of the frame size.
- Fully reversed load applied to the end of the smallest diameter standard mounting shaft extension.
- 3. Infinite life with 99% reliability.
- 4. Safety factor = 2.

"M" Connector Option

Connector Part Number: Molex 39-01-4056 (Eng No. 5559-05P3)


Pin	Function	Color
1	Phase U	Blue
2	Phase V	Brown
3	Phase W	Violet
4	Ground	Green/Yellow
5	Shield	

Shield Connected to Motor Ground Internal to Motor

Suggested Mating Connector

Molex 39-01-4050

Encoder Feedback

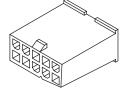
Connector Part Number: Molex 43020-1801

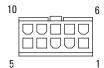
Pin	Function	Color
1	B+	Blue
2	B-	Blue/White
3	A+	Yellow
4	A-	Yellow/White
5	Z+	Orange
6	Z-	Orange/White
7	Ground/Hall Ground	Black
8	Thermal+	Grey
9	Thermal-	Violet
10	+5 Vdc	Red
11		
12		
13		
14		
15	Hall U	Green
16	Hall V	Brown
17	Hall W	White
18	Shield	

Shield is Not Connected at Motor End

Suggested Mating Connector Molex 43025-1800

Halls Feedback


Connector Part Number: Molex 43020-1001


Pin	Function	Color
1	+5 Vdc	Red
2	Ground	Black
3		
4		
5	Shield	
6	Thermal+	Grey
7	Thermal-	Violet
8	Hall U	Green
9	Hall V	Brown
10	Hall W	White

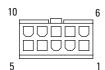
Shield Connected to Motor Ground Internal to Motor

Suggested Mating Connector

Molex 43025-1000

SFD Feedback

Connector Part Number: Molex 43020-1001


Pin	Function	Color
1	SFD +5 V	Red
2	SFD +5V RTN	Black
3	SFD COM-	Green
4	SFD COM+	Brown
5	SFD COM Shield	

Resolver Feedback

Connector Part Number: Molex 43020-1001

Confidence Late Number. Molex 43020-1001		
Pin	Function	Color
1		
2	Thermal+	Grey
3	S4 COS-	Blue
4	S3 SIN-	Black
5	Reference	Black/White
6	Thermal-	Violet
7	S2 COS+	Yellow
8	S1 SIN+	Red
9	Reference+	Red/White
10	Shield	

Shield is Not Connected at Motor End

Suggested Mating Connector

Molex 43025-1000

"L" Flying Lead Option (No connectors)

Power Leads

Unterminated Shielded Cable

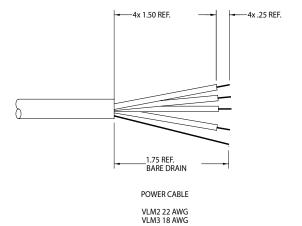
Function	Color
Phase U	Blue
Phase V	Brown
Phase W	Violet
Ground	Green/Yellow
Shield	

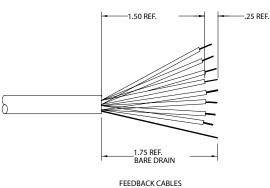
Encoder Feedback

Unterminated Shielded Cable

Function	Color
A+	Yellow
А-	Yellow/White
B+	Blue
B-	Blue/White
Z+	Orange
Z-	Orange/White
Thermal+	Grey
Thermal-	Violet
+5 Vdc	Red
Ground/Hall Ground	Black
Hall U	Green
Hall V	Brown
Hall W	White
Shield	

Hall Feedback


Unterminated Shielded Cable


Official interest of the control of		
Function	Color	
+5 Vdc	Red	
Ground	Black	
Hall U	Green	
Hall V	Brown	
Hall W	White	
Thermal+	Grey	
Thermal-	Violet	
Shield		

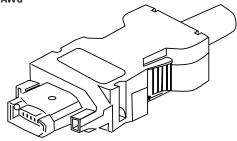
Resolver Feedback

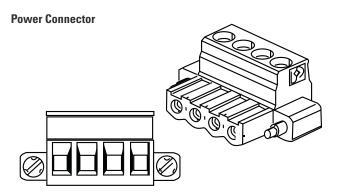
Unterminated Shielded Cable

Function	Color
S1 SIN+	Red
S2 COS+	Yellow
S4 COS-	Blue
S3 SIN-	Black
Reference-	Black/White
Reference+	Red/White
Thermal+	Grey
Thermal-	Violet
Shield	

28 AWG NUMBER OF CONDUCTORS WILL VARY DEPENDING ON FEEDBACK TYPE.

SFD Feedback


Unterminated Shielded Cable


Function	Color
SFD +5v	Red
SFD +5v RTN	Black
SFD COM-	Green
SFD COM+	Brown
SFD COM SHIELD	

"F" Connector Option (For Direct Connection To S200-VTS)

Power Cable

VLM2 22 AWG VLM3 18 AWG

Connector Part Number: Phoenix MSTB2,5/4-STF-5,08-BK

Pin	Function	Color
1	Ground	Green/Yellow
2	Phase W	Violet
3	Phase V	Brown
4	Phase U	Blue

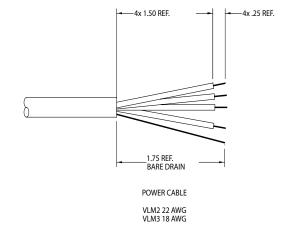
SFD Feedback

Connector Part Number: Molex 55100-0670

Pin	Function	Color
1	SFD +5V	Red
2	SFD +5V RTN	Black
3	SFD COM-	Green
4	SFD COM+	Brown
5		
6		

Halls Feedback

Connector Part Number: Molex 55100-0670


Pin	Function	Color
1	+5V	Red
2	Ground	Black
3		
4	Hall U	Green
5	Hall V	Brown
6	Hall W	White
	Thermal+	Grey
	Thermal-	Violet

"K" Connector Option

Power Leads

(For Direct Connection To AKD)
Unterminated Shielded Cable

Function	Color
Phase U	Blue
Phase V	Brown
Phase W	Violet
Ground	Green/Yellow
Shield	

Resolver Feedback

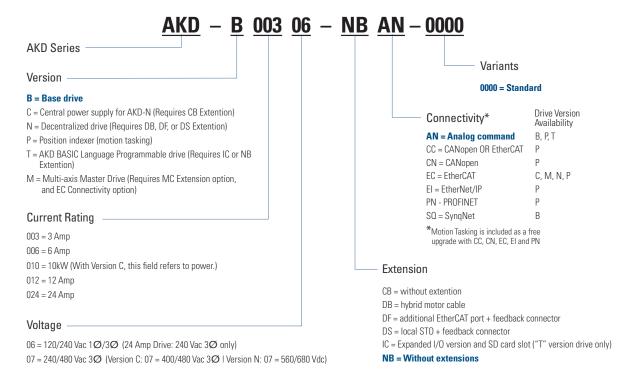
Connector Part Number: 15 PIN HD D-SUB

Pin	Function	Color
1		
2		
3		
4		
5		
6	Reference+	Red/White
7	Reference-	Black/White
8	Thermal+	Grey
9	Thermal-	Violet
10		
11		
12	S1 SIN+	Red
13	S3 SIN-	Black
14	S2 COS+	Yellow
15	S4 COS-	Blue

SFD Feedback

Connector Part Number: 15 PIN HD D-SUB

Pin	Function	Color
1		
2		
3		
4		
5		
6	SFD COM+	Brown
7	SFD COM-	Green
8		
9		
10	SFD +5V	Red
11	SFD +5V RTN	Black
12		
13		
14		
15		

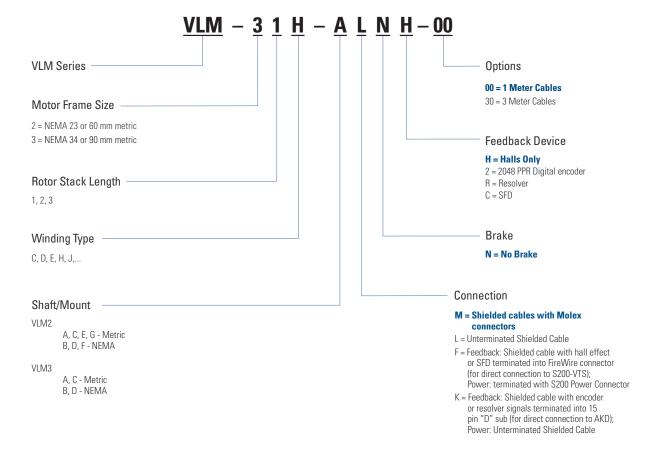

Encoder Feedback

Connector Part Number: 15 PIN HD D-SUB

Pin	Function	Color
1	Hall U	Green
2	Hall V	Brown
3	Hall W	White
4		
5		
6	Z+	Orange
7	Z-	Orange/White
8	Thermal+	Grey
9	Thermal-	Violet
10	+5 Vdc	Red
11	Ground	Black & Green/White
12	A+	Yellow
13	A-	Yellow/White
14	B+	Blue
15	B-	Blue/White

Model Nomenclature

AKD Servo Drive



Note: Options shown in bold blue text are considered standard

Model Nomenclature

VLM Servomotor

The VLM is one family of many servo motors offered by Kollmorgen. If you seek higher-performance, greater torque in a smaller package, or options not listed above, contact Kollmorgen to discuss the AKM and GoldLine servo motor families.

Note: Options shown in bold blue text are considered standard

MOTIONEERING® Application Engine

To help select and size Kollmorgen components, this Windows®-based motor-sizing program takes a systems approach to the selection of brushless DC servomotors, stepper motors and drives. MOTIONEERING application engine, available at www.kollmorgen.com, uses a project concept for the collection and saving of rotary and linear multi-axis load information. This provides the user the flexibility to sum the effects of multiple axes of motion for power supply and shunt regeneration sizing.

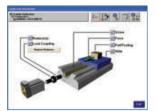
A wide variety of linear and rotary mechanisms are provided including lead screw, rack and pinion, conveyor, nip rolls, cylinder, rotary, and direct data-entry using unique sizing algorithms and product databases criteria.

The searchable database consists of hundreds of systems on product combinations including rotary housed and frameless brushless servomotors, direct drive rotary and linear brushless servomotors, linear actuators (electric cylinders, rodless actuators, and precision tables) and stepper systems.

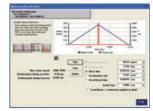
The MOTIONEERING application engine also provides versatile units-of-measure selection options for mechanism and motion profile data-entry, with the ability to convert data into other available units. Online Help explains program functions and the definition of terms and equations used in the program.

Features

- Group multiple mechanisms within a "project" organize and combine data for power supply and regeneration sizing
- · Types of mechanisms for analysis include lead screw, rack and pinion, conveyor, nip rolls, rotary and direct drive linear motor
- Motion profile options include simple triangle, 1/3-1/3-1/3 trapezoidal, variable traverse trapezoidal, and more
- Search results display shows color highlighted solution set of options for easy evaluation of system specifications and selection


Supported Operating Systems

Microsoft® Windows 2000, XP, Vista, Windows 7


MOTIONEERING 6.4.0 includes

- NEW AKMH series Stainless Steel Motors and AKD systems at 120, 240, 400 and 480 V
 - Designed to meet IP69K, EHEDG, 3A, and built with FDA approved food grade materials
 - 19 frame/stack length combinations
 - Continuous torque to 22 Nm
 - · Peak torque to 92 Nm
- · Corrected length dimensions of some AKM servomotor & gearmotor
- Corrected CH132 thermal resistance
- · Added HIPERFACE DSL sine encoder to search field

Note: Performance curves included for all servomotor systems

